# Math Cheat Sheet ## Basic ### Fractions A number expressed in the form π‘Žπ‘ Adding and Subtracting with the same denominator: π‘Žπ‘+𝑐𝑏=π‘Ž+𝑐𝑏 π‘Žπ‘βˆ’π‘π‘=π‘Žβˆ’π‘π‘ Adding and Subtracting with the different denominator: π‘Žπ‘+𝑐𝑑=π‘Žπ‘‘+𝑐𝑏𝑏𝑑 π‘Žπ‘βˆ’π‘π‘‘=π‘Žπ‘‘βˆ’π‘π‘π‘π‘‘ Multiplying and Dividing Fractions: π‘Žπ‘Γ—π‘π‘‘=π‘ŽΓ—π‘π‘Γ—π‘‘ π‘Žπ‘Γ·π‘π‘‘=π‘Žπ‘π‘π‘‘=π‘Žπ‘‘π‘π‘ ### ***Decimals\*** Is a fraction written in a special form? For example, instead of writing 12 you can write 0.5. ### ***Mixed Numbers\*** A number is composed of a whole number and a fraction. Example: 223 Converting between improper fractions and mixed numbers: π‘Žπ‘π‘=π‘Ž+𝑐𝑏=π‘Žπ‘+𝑐𝑏 ### ***Factoring Numbers\*** Factor a number means breaking it up into numbers that can be multiplied together to get the original number. Example:12=2Γ—2Γ—3 ### ***Integers\*** {…,βˆ’3,βˆ’2,βˆ’1,0,1,2,3,…} Includes: zero, counting numbers, and the negative of the counting numbers ### ***Real Numbers\*** All numbers that are on a number line. Integers plus fractions, decimals, and irrationals, etc.) (2β€Ύβˆš,3β€Ύβˆš,Ο€, etc.) ### ***Order of Operations\*** PEMDAS (parentheses/ exponents/ multiply/ divide/ add/ subtract) ### ***Absolute Value\*** Refers to the distance of a number from, the distances are positive as the absolute value of a number cannot be negative. |βˆ’22|=22 ### ***Ratios\*** A ratio is a comparison of two numbers by division. Example: 3:5, or 35 ### ***Percentages\*** Use the following formula to find part, whole, or percent part =π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘100Γ—π‘€β„Žπ‘œπ‘™π‘’ ### ***Proportional Ratios\*** A proportion means that two ratios are equal. It can be written in two ways: π‘Žπ‘=𝑐𝑑 , π‘Ž:𝑏=𝑐:𝑑 ### ***Percent of Change\*** 𝑁𝑒𝑀 π‘‰π‘Žπ‘™π‘’π‘’ – 𝑂𝑙𝑑 π‘‰π‘Žπ‘™π‘’π‘’π‘‚π‘™π‘‘π‘‰π‘Žπ‘™π‘’π‘’Γ—100% ### ***Expressions and Variables\*** A variable is a letter that represents unspecified numbers. One may use a variable in the same manner as all other numbers: **Addition**: 2+π‘Ž: 2 plus a **Subtraction**: π‘¦βˆ’3 : 𝑦 minus 3 **Division**: 4π‘₯ : 4 divided by x **Multiplication**: 5π‘Ž : 5 times a ### ***Distributive Property\*** π‘Ž(𝑏+𝑐)=π‘Žπ‘+π‘Žπ‘ ### ***Equations\*** The values of the two mathematical expressions are equal. π‘Žπ‘₯+𝑏=𝑐 ### ***Distance from A to B:\*** (π‘₯1βˆ’π‘₯2)2+(𝑦1βˆ’π‘¦2)2β€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβ€Ύβˆš ### ***Parallel and Perpendicular lines:\*** Parallel lines have equal slopes. Perpendicular lines (i.e., those that make a 90∘ angle where they intersect) have negative reciprocal slopes: π‘š1 .π‘š2=βˆ’1. Parallel Lines (l βˆ₯ m) ### ***Mid-point of the segment AB:\*** M (π‘₯1+π‘₯22,𝑦1+𝑦22) ### ***The slope of the line:\*** 𝑦2βˆ’π‘¦1π‘₯2–π‘₯1=π‘Ÿπ‘–π‘ π‘’π‘Ÿπ‘’π‘› ### ***Point-slope form:\*** Given the slope m and a point (π‘₯1,𝑦1) on the line, the equation of the line is (π‘¦βˆ’π‘¦1)=π‘š (π‘₯βˆ’π‘₯1). ### ***Slope-intercept form:\*** Given the slope m and the y-intercept b, then the equation of the line is: 𝑦=π‘šπ‘₯+𝑏. ### ***Factoring:\*** β€œFOIL” (π‘₯+π‘Ž)(π‘₯+𝑏) =π‘₯2+(𝑏+π‘Ž)π‘₯+π‘Žπ‘ β€œDifference of Squares” π‘Ž2βˆ’π‘2=(π‘Ž+𝑏)(π‘Žβˆ’π‘) π‘Ž2+2π‘Žπ‘+𝑏2=(π‘Ž+𝑏)(π‘Ž+𝑏) π‘Ž2βˆ’2π‘Žπ‘+𝑏2=(π‘Žβˆ’π‘)(π‘Žβˆ’π‘) β€œReverse FOIL” π‘₯2+(𝑏+π‘Ž)π‘₯+π‘Žπ‘= (π‘₯+π‘Ž)(π‘₯+𝑏) ### ***Exponents:\*** Refers to the number of times a number is multiplied by itself. 8=2Γ—2Γ—2=23 ### ***Scientific Notation:\*** It is a way of expressing numbers that are too big or too small to be conveniently written in decimal form. In scientific notation all numbers are written in this form: π‘šΓ—10𝑛 **Scientific notation**: 5Γ—100 βˆ’2.5Γ—104 5Γ—10βˆ’1 2,122456Γ—103 ### ***Square:\*** The number we get after multiplying an integer (not a fraction) by itself. Example: 2Γ—2=4,22=4 ### ***Square Roots:\*** A square root of π‘₯ is a number r whose square is π‘₯:π‘Ÿ2=π‘₯ π‘Ÿ is a square root of π‘₯ ### ***Pythagorean Theorem:\*** π‘Ž2+𝑏2=𝑐2 ![img](https://www.effortlessmath.com/wp-content/uploads/2020/04/ttt.png) ### ***Triangles\*** ### ***All triangles:*** Area =12 b . h Angles on the inside of any triangle add up to 180∘. ### ***Equilateral:\*** These triangles have three equal sides, and all three angles are 60∘. ### ***Isosceles:\*** An isosceles triangle has two equal sides. The β€œbase” angles (the ones opposite the two sides) are equal (see the 45∘ triangle above). ### ***Circles\*** ![This image has an empty alt attribute; its file name is circ-1.png]() Area =Ο€π‘Ÿ2 Circumference =2Ο€π‘Ÿ Full circle =360∘ ### ***Rectangles*** ![This image has an empty alt attribute; its file name is h-2.png]() (Square if *l=w*) Area=*lw* ![This image has an empty alt attribute; its file name is jk.png]() ### ***Parallelogram*** (Rhombus if *l=w*) Area*=lh* Regular polygons are n-sided figures with all sides equal and all angles equal. The sum of the inside angles of an n-sided regular polygon is (π‘›βˆ’2).180∘. ### ***Area of a trapezoid:\*** 𝐴=12β„Ž(𝑏1+𝑏2) ### ***Surface Area and Volume of a Rectangular/right prism:\*** 𝑆𝐴=π‘β„Ž+2𝐡 𝑉=π΅β„Ž ### ***Surface Area and Volume of a Cylinder:*** 𝑆𝐴=2Ο€π‘Ÿβ„Ž+2Ο€π‘Ÿ2 𝑉=Ο€π‘Ÿ2β„Ž ### ***Surface Area and Volume of a Cone*** 𝑆𝐴=Ο€π‘Ÿπ‘ +Ο€π‘Ÿ2 𝑉=13 Ο€π‘Ÿ2 β„Ž ### ***Surface Area and Volume of a Sphere*** 𝑆𝐴=4Ο€π‘Ÿ2 𝑉=43 Ο€π‘Ÿ3 (p = perimeter of base B; Ο€ 3.14) ### ***Simple interest***: 𝐼=π‘π‘Ÿπ‘‘ (*I* = interest, *p* = principal, *r* = rate, *t* = time) ### ***mean***: Mean: π‘ π‘’π‘š π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘‘π‘Žπ‘œπ‘“ π‘‘π‘Žπ‘‘π‘Ž π‘’π‘›π‘‘π‘–π‘Ÿπ‘’π‘  ### ***mode:*** Value in the list that appears most often ### ***range:*** Largest value βˆ’ smallest value ### ***Median\*** The middle value in the list (which must be sorted) Example: median of {3,10,9,27,50}=10 Example: median of {3,9,10,27}=(9+10)2=9.5 ### ***Average\*** π‘ π‘’π‘š π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘šπ‘ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘’π‘Ÿπ‘šπ‘  ### ***Average speed\*** π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘šπ‘’ ### ***Probability\*** π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘’π‘ π‘–π‘Ÿπ‘’π‘‘ π‘œπ‘’π‘‘π‘π‘œπ‘šπ‘’π‘ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘‘π‘Žπ‘™ π‘œπ‘’π‘‘π‘π‘œπ‘šπ‘’π‘  The probability of two different events A and B both happening is: P(A and B)=p(A) .p(B) as long as the events are independent (not mutually exclusive). ### ***Powers, Exponents, Roots\*** π‘₯π‘Ž.π‘₯𝑏=π‘₯π‘Ž+𝑏 π‘₯π‘Žπ‘₯𝑏=π‘₯π‘Žβˆ’π‘ 1π‘₯𝑏=π‘₯βˆ’π‘ (π‘₯π‘Ž)𝑏=π‘₯π‘Ž.𝑏 (π‘₯𝑦)π‘Ž=π‘₯π‘Ž.π‘¦π‘Ž π‘₯0=1 π‘₯π‘¦β€Ύβ€Ύβ€Ύβˆš=π‘₯β€Ύβ€Ύβˆš.π‘¦βˆš (βˆ’1)𝑛=βˆ’1, if n is odd. (βˆ’1)𝑛=+1, if n is even. If 0<π‘₯<1, then 0<π‘₯3<π‘₯2<π‘₯<π‘₯β€Ύβ€Ύβˆš<3π‘₯β€Ύβ€Ύβ€Ύβˆš<1. ### ***Simple Interest\*** The charge for borrowing money or the return for lending it. Interest = principal Γ— rate Γ— time OR 𝐼=π‘π‘Ÿπ‘‘ ### ***Powers/ Exponents\*** ### ***Positive Exponents\*** An exponent is simply shorthand for multiplying that number of identical factors. So 43 is the same as (4)(4)(4), three identical factors of 4. And π‘₯3 is just three factors of x, (π‘₯)(π‘₯)(π‘₯). ### ***Negative Exponents\*** A negative exponent means to divide by that number of factors instead of multiplying. So 4βˆ’3 is the same as 143 and π‘₯βˆ’3=1π‘₯3 ### ***Factorials*** Factorial- the product of a number and all counting numbers below it. 8 factorial =8!= 8Γ—7Γ—6Γ—5Γ—4Γ—3Γ—2Γ—1=40,320 5 factorial =5!= 5Γ—4Γ—3Γ—2Γ—1=120 2 factorial =2!=2Γ—1=2 ### ***Multiplying Two Powers of the SAME Base*** When the bases are the same, you find the new power by just adding the exponents π‘₯π‘Ž.π‘₯𝑏=π‘₯π‘Ž+𝑏 ### ***Powers of Powers\*** For the power of power: you multiply the exponents. (π‘₯π‘Ž)𝑏=π‘₯(π‘Žπ‘) ### ***Dividing Powers\*** π‘₯π‘Žπ‘₯𝑏=π‘₯π‘Žπ‘₯βˆ’π‘=π‘₯π‘Žβˆ’π‘ ### ***The Zero Exponent\*** Anything to the 0 power is 1. π‘₯0=1 ## Advanced